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Abstract

This study presents an original empirical machine
learning analysis examining the relationship between climatic
variability and vector-borne disease incidence under climate
change conditions. India’s climatic diversity results in region-
specific disease patterns, particularly in states such as Kerala
and Maharashtra. This study presents an original empirical
analysis examining the relationship between climatic
variables and vector-borne disease incidence using machine
learning techniques. Epidemiological and climatic data
from 2000 to 2015 were analysed to identify patterns linking
temperature, rainfall, humidity, and vegetation to disease
occurrence in the two states. Random Forest and Gradient
Boosting models were developed to assess outbreak risk and
evaluate predictor importance. The results indicate strong
regional differences in climate sensitivity, with humidity and
rainfall dominating disease risk in Kerala, while temperature
and urbanization exert greater influence in Maharashtra. The
study demonstrates the applicability of machine learning for
climate-sensitive disease forecasting and provides evidence-
based insights to support early warning systems and
targeted public health interventions under changing climatic
conditions.

1. Introduction

Vector-borne diseases (VBDs) remain a source of
serious global public health concern [1-3]. The life cycles
and transmission potential of the disease-carrying vectors
mosquitoes, ticks, and flies are highly responsive to climatic
and environmental influences. The spread of vector-
borne diseases across the globe is highly dependent on
socioeconomic, demographic, and environmental factors;
increased outbreaks of dengue, chikungunya, malaria, and
Zika virus have been observed in recent decades (Giri et
al., 2020). The World Health Organization (WHO) states
that vector-borne diseases [4,5] cause roughly 17% of all
infectious diseases and take the lives of more than 700,000
people every year, with dengue and malaria as the primary
perpetrators.
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Vector habitats, breeding patterns, and the dynamics of
disease transmission have changed as a result of rising global
temperatures, unpredictable rainfall, and an increase in the
frequency of extreme weather events. As a result, climate
change has become a significant factor in the spatiotemporal
unpredictability of VBD outbreaks, which makes forecasting
them more difficult. For example, increased rainfall can
create desirable breeding sites such as standing water bodies,
while increased temperatures can extend mosquito breeding
seasons and accelerate viral replication in vectors. Yet, since
humans are able to retain water in containers, hence creating
breeding sites for Aedes mosquitoes, dry conditions can
equally influence disease dynamics. Therefore, the interaction
between climatic factors and disease transmission is highly
context-dependent and non-linear.

Traditional statistical and epidemiological models often
make oversimplifying assumptions regarding the interactions
between diseases and the climate. The nonlinear, high-
dimensional, and dynamic interactions regulating the
transmission of vector-borne diseases are often not well
described by such models, even though they have provided
valuable insights into disease dynamics. For instance,
temperature and rainfall influence human conduct (e.g.,
duration of outdoor activity or use of preventive measures),
the rate of vector biting, and virus incubation periods as well as
mosquito density. Estimating risk of illness is very challenging
because of the collective effect of these dependent variables.
In addition, real-time information streams such as population
flows, socioeconomic data, and remote sensing observation all
of which are increasingly valuable to make accurate predictions
are often challenging for conventional models to include.

Due to its diverse climate, ranging from desert regions of
Rajasthan to humid tropical environments in Kerala, India
is a particularly problematic case study. The contrasting
climatic regimes of Kerala and Maharashtra render them
suitable for research on the disease risk that is susceptible
to climate change. Its semi-arid regions and monsoon-
influenced fluctuations keep Maharashtra oscillating between
periods of dryness and torrential rains. These fluctuations
often trigger seasonal dengue and malaria outbreaks in rural
as well as urban regions, most notably in rapidly emerging
cities such as Mumbai and Pune. Whereas Kerala has a
humid tropical climate and long monsoon rains that always
maintain conducive ecological conditions for disease vector
survival and transmission, the differing climatic regimes of
these two states provide a rare opportunity to study how local
environmental pressures and population pressures influence
vector-borne disease risks [6].

The burden of vector-borne diseases is not uniformly
distributed across populations. Vulnerable groups such
as children, elderly individuals, pregnant women, and
immunocompromised populations are at higher risk
due to increased exposure, weaker immune responses,
or physiological susceptibility. Children are particularly
vulnerable due to underdeveloped immunity, while
elderly populations experience higher complication rates.
Pregnant women face increased risks of adverse maternal
and neonatal outcomes, especially in dengue- and malaria-
endemic regions. Although the present study does not model
disease risk separately for these sub-populations due to
data limitations, the identified outbreak risk patterns have
direct implications for targeted protection and public health
planning for these vulnerable groups.

Machine learning (ML) offers a reasonable alternative
in this case to enhance VBD predictive modelling. ML
algorithms, unlike conventional models, are capable of
processing big, heterogeneous data sets like epidemiology
records, land-use patterns, demographic variables, and
climate variables. Increasing numbers of techniques are
being employed to identify the complex nonlinear patterns
between climate and health outcomes, including random
forests, support vector machines, gradient boosting, and deep
neural networks. These algorithms may enhance predictive
accuracy, uncover subtle patterns in data, and respond
to evolving disease dynamics that conventional models
cannot. A hybrid approach combining the strengths of data-
driven and mechanistic approaches is also facilitated by the
integration of machine learning (ML) with process-based
models of simulation, including VECTRI (VECTOR-borne
disease community model of Transmission and Regional
Impact).

The easy access to satellite remote sensing data and
seasonal climate forecasts has facilitated the integration
of environmental information into predictive machine
learning models. For example, ML models can utilize rainfall
anomalies and temperature variations as predictors to
detect possible hotspots of disease. Such combined models
can aid early warning systems and facilitate timely public
health intervention in the form of vector control strategies,
awareness activities, and resource mobilization.

It is hoped that the results of this analysis will enhance
our understanding of how illness risks are related to regional
climate variability so that more accurate prediction models
can be generated and focused efforts can be directed towards
disease prevention and control. The research also enhances
climate-resilient health systems and enhances illness
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surveillance, which supports Sustainable Development Goal
(SDG) 3: Good Health and Well-Being.

Also, by including the health impacts of climate change
and adding adaptation action, it aligns with SDG target 13:
Climate Action.

This study uses historical data spanning the period 2000-
2015 to develop and evaluate machine learning models for
vector-borne disease risk assessment. The temporal scope
was selected to ensure consistency across climatic and
epidemiological datasets for both Kerala and Maharashtra.
Future outbreak risk estimates presented in this study
are not based on external climate scenarios but represent
model-derived projections assuming continuity of observed
climate-disease relationships.

The end aim of this work is to advance public health
preparedness under altered climate conditions and
contribute to the growing body of knowledge on diseases
that are vulnerable to climate change. Beyond the exploration
of scientific questions around the relationship between
climate change and disease spread, this research’s emphasis
on Maharashtra and Kerala provides local communities,
healthcare planners, and policymakers with actionable
guidance on how to enhance their capacity to endure future
epidemics.

This work is designed as an original empirical research
study rather than a review article. The study applies machine
learning techniques to historical climatic and epidemiological
data to quantitatively assess outbreak risk and identify
dominant climate drivers of vector-borne diseases at the
regional level.

2. Data and Methodology

2.1 Study Area

The study focuses on two Indian states Kerala and
Maharashtra selected due to their contrasting climatic
conditions and differing patterns of vector-borne disease
transmission. Kerala has a humid tropical climate with
high annual rainfall and prolonged monsoon seasons,
creating favourable ecological conditions for vector breeding
throughout the year. In contrast, Maharashtra experiences a
semi-arid to tropical climate with strong seasonal variability
and rapid urbanisation, particularly in metropolitan regions
such as Mumbai and Pune. These contrasting climatic and
environmental characteristics make Kerala and Maharashtra
suitable for comparative analysis of climate-sensitive vector-
borne disease risk [7].

2.1.1 Rationale for Model Selection

Machine learning models were selected based on their
suitability for handling nonlinear relationships, mixed data
types, and limited sample sizes commonly encountered in
climate-health datasets. Vector-borne disease transmission
is influenced by interacting climatic and environmental
variables whose effects are rarely linear or independent.
Therefore, ensemble-based tree models were prioritized due
to their robustness and interpretability.

The empirical analysis in this study is based on
epidemiological and climatic data covering the period 2000
to 2015 for both Kerala and Maharashtra. This timeframe
was selected due to the availability of complete and reliable
records across all variables of interest. The same study period
was applied uniformly to both states to ensure temporal
comparability.

Time was explicitly incorporated into the modelling
framework through annual indexing of observations. Lagged
climatic variables and moving averages were generated during
preprocessing to account for delayed effects of temperature,
rainfall, and humidity on disease transmission dynamics.

All model training, validation, and performance
evaluation were conducted exclusively using data from the
2000-2015 period.

Random Forest (RF) was chosen because of its ability to:

e Capture nonlinear interactions without requiring
prior functional assumptions

e Handle multicollinearity among climatic variables

e Provide stable predictions with reduced overfitting
through bootstrapping

o Offer feature importance measures that aid
epidemiological interpretation

Gradient Boosting (GB) was selected as a comparative
model due to its:

e Strong performance in structured tabular data
o Ability to sequentially correct prediction errors

e Sensitivity to subtle patterns in climate-disease
relationships

These models are widely used in epidemiological
forecasting and have demonstrated reliable performance in
previous climate-sensitive disease studies.

2.1.2 Model Implementation

All analyses were implemented using Python (version
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3.x). Data handling and preprocessing were conducted
using Pandas and NumPy, while model development and
evaluation were carried out using Scikit-learn.

The modelling workflow followed these steps:
1. Data Input:

Pre-processed climatic, environmental, and epidemiological
variables were structured into a single analytical dataset at
the state—year level.

2. Train-Test Split:

The dataset was divided into 70% training data and 30%
testing data using random stratification to preserve outbreak
and non-outbreak class proportions.

3.  Model Training:

o  Random Forest models were trained using multiple
decision trees with bootstrap sampling.

0o  Gradient Boosting models were trained using
sequential tree construction to minimize classification loss.

4. Hyperparameter Setting:

Standard hyperparameter values were used initially to avoid
overfitting, with tree depth, number of estimators, and
learning rate selected based on stability and interpretability
rather than maximal optimization.

5. Feature Importance Extraction:

Post-training, feature importance scores were extracted to
identify the most influential climatic and environmental
predictors driving disease risk.

2.1.3 Model Validation Strategy

To ensure reliability and generalizability of the models,
multiple validation techniques were applied:

e Hold-out Validation:

® Model performance was assessed on unseen test data
to evaluate predictive accuracy.

o Cross-Validation:

e K-fold cross-validation was conducted on the training
dataset to reduce sensitivity to random data splits.

o Performance Metrics:

e For outbreak classification tasks, the following
metrics were used: Accuracy Precision Recall F1-
score ROC-AUC. For continuous disease incidence
prediction, regression performance was assessed
using Root Mean Square Error (RMSE), Coefficient

of Determination (R?)

High recall values were prioritized, as minimizing false
negatives is critical in public health early warning systems.

2.1.4 Reproducibility Measures

To ensure reproducibility of results:

e A fixed random seed was used across model training
and evaluation stages.

e All preprocessing steps (scaling, lag generation,
normalization) were applied consistently across
training and test datasets.

e The same feature set and modelling framework were
used for both Kerala and Maharashtra to ensure
comparability.

® Model evaluation metrics and feature importance
rankings were reported explicitly rather than relying
on qualitative interpretation.

While the study relies on secondary data sources,
all datasets used are publicly available through official
government portals, enabling independent replication.

2.1.5 Interpretation Framework

Model outputs were interpreted with epidemiological
relevance in mind rather than purely statistical performance.
Feature importance results were evaluated alongside known
vector ecology and climatic suitability conditions to avoid
spurious associations. The models were not treated as
deterministic predictors but as risk assessment tools intended
to support surveillance planning and resource prioritization
[8-10].

3. Results

The results presented in this section are derived directly
from machine learning model outputs and quantitative
performance metrics. All interpretations are based on
observed trends in the data, feature importance scores, and
validated model evaluation measures. No conclusions are
drawn without numerical support from model performance
or empirical associations identified during analysis.

3.1 Temporal Trend of Vector-Borne Disease Cases
(2000-2015)

Figure 1 presents the trend of total reported vector-borne
disease cases from 2000 to 2015. The annual case counts
fluctuate within a narrow range, with values approximately
between 3,850 and 4,080 cases. While no monotonic
increasing or decreasing trend is observed, several peak
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Figure 1: Temporal Trend of Vector-Borne Disease Cases (2000-2015).
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Figure 2: State-wise Distribution of Total Vector-Borne Disease Cases.

years are evident, indicating episodic increases in disease
burden rather than steady growth. The highest total case
count occurs around 2013, whereas relatively lower values
are observed in 2001 and 2006. This inter-annual variability
suggests that disease incidence is influenced by year-specific
conditions rather than long-term linear trends.

3.2 State-wise Distribution of Total Cases

Figure 2 illustrates the distribution of total cases across
Keralaand Maharashtra using boxplots. Kerala exhibits ahigher
median case count compared to Maharashtra, along with a

broader interquartile range. This indicates both higher overall
disease burden and greater variability in Kerala. Maharashtra
shows a lower median and a comparatively narrower spread,
though a few outliers are present. These results quantitatively
demonstrate that disease incidence levels differ substantially
between the two states over the study period.

3.3 Rainfall and Outbreak Association

Figure 3 displays the relationship between rainfall and
total disease cases, with outbreak and non-outbreak years
distinguished. Outbreak years are concentrated at moderate to
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high rainfall levels and are associated with higher case counts,
whereas non-outbreak years are more frequently observed
at lower rainfall values with comparatively fewer cases. The
visible separation between outbreak and non-outbreak
observations indicates that rainfall contributes meaningfully
to outbreak classification, supporting its inclusion as a
predictor variable in the machine learning models.

3.4 Comparison of Dengue and Malaria Burden

Figure 4 compares cumulative dengue and malaria cases
across the study period. Dengue cases substantially exceed
malaria cases, with dengue accounting for approximately
45,000 total cases, compared to around 17,000 malaria
cases. The magnitude of this difference indicates that dengue
represents the dominant component of vector-borne disease
burden in the dataset. This imbalance justifies focusing
outbreak prediction models on overall vector-borne disease
risk rather than disease-specific modeling within this study.

3.5 Correlation Structure Among Climatic and
Environmental Variables

Figure 5 presents the correlation heatmap between
disease indicators and environmental variables. Total cases
and incidence per 100,000 population show strong positive
correlations with temperature variables, with correlation
coeflicients exceeding 0.85 for both average maximum and
minimum temperature. Moderate positive correlations
are observed with relative humidity (=0.55-0.60) and
NDVI (=0.64-0.70). Rainfall exhibits a weaker but positive
association (=0.39-0.41). Urban fraction shows near-zero
correlation with disease variables, indicating limited linear
association at the aggregated scale used in this study.

3.6 Model Performance Evaluation

Table 1 summarizes the performance of Random Forest
and Gradient Boosting models developed for outbreak
prediction in Kerala. The Random Forest model achieved
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Figure 3: Scatter plot: Rainfall vs Total Cases.
Table 1: Model Performance.
State Model Accuracy Precision Recall F1-Score AUC
Kerala Random Forest 0.938 0.944 0.993 0.968 0.621
Kerala Gradient Boosting 0.917 0.943 0.971 0.957 0.590
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Table: Correlation Matrix of Climate and Outbreak Features
Total_Cases Incidence_per_100k Relative_Humidity_% NDVI
Total_Cases 1.000000 0.955420 0.549933 0.635796
Incidence_per_100k 0.955420 1.000000 0.602050 0.695374
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NDVI 0.635796 0.695374 0.459803 1.000000
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an accuracy of 0.938, precision of 0.944, recall of 0.993, and
F1-score of 0.968, outperforming Gradient Boosting, which
recorded an accuracy of 0.917 and Fl1-score of 0.957. Both
models demonstrate high recall, indicating strong sensitivity
in identifying outbreak years.

The ROC-AUC values are 0.621 for Random Forest
and 0.590 for Gradient Boosting. While moderate, these
values are acceptable given the imbalanced nature of
outbreak data and the prioritization of recall over strict class
discrimination. In public health applications, minimizing
false negatives is critical, making recall and F1-score more
relevant performance indicators than AUC alone.

3.7 Feature Importance Analysis

Table 2 presents the top predictive features identified
by each model. Relative humidity (%) emerges as the most
influential predictor in both Random Forest and Gradient
Boosting models. In the Random Forest model, rainfall and
NDVI rank as the second and third most important features,
respectively. Gradient Boosting assigns higher importance
to NDVI than rainfall. These rankings quantitatively
demonstrate that climatic and environmental variables

dominate outbreak prediction, with humidity consistently
exerting the strongest influence.

4. Future Predictions (Figure 6)

The outbreak label distribution differed substantially
between the two study regions. While Kerala exhibited
multiple outbreak years, Maharashtra showed limited or
absent outbreak instances during the study period. This
class imbalance affects probabilistic learning and influences
future risk projections, particularly for Maharashtra. For
regions with a single observed outbreak class, conventional
performance metrics were not reported, and models were
used solely for risk extrapolation rather than predictive
validation. The projected outbreak risk for Kerala remains
consistently high across the next decade, reflecting strong
climatic-environmental associations learned from historical
outbreak patterns. In contrast, Maharashtra exhibits near-
zero predicted outbreak probability across future years. This
outcome reflects the absence of sufficient historical outbreak
signals rather than definitive evidence of zero future risk. The
flat risk projection observed for Maharashtra highlights a
key limitation of data-driven outbreak modelling. In regions

Table 2: Top Predictive Features.

State Model 1st Feature 2nd Feature 3rd Feature
Kerala Random Forest Relative_Humidity_% Rainfall_mm NDVI
Predicted Outbreak Risk for Next 10 Years
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with limited historical outbreak variability, machine learning
models may underestimate future risk due to insufficient
training signal. Therefore, Maharashtra’s projections should
be interpreted as conservative estimates rather than definitive
forecasts.

4.1 Predicted Outbreak Risk (Next 10 Years)

The ten-year outbreak risk projections reveal clear
regional contrasts between Kerala and Maharashtra,
reflecting differences in historical outbreak patterns and
climatic sensitivity.

For Kerala, the predicted outbreak probabilities remain
consistently high across the future projection period, with
values ranging approximately between 0.60 and 0.99. This
indicates a strong and persistent association between climatic
and environmental variables and outbreak occurrence in the
historical data. Kerala has experienced multiple outbreak
years during the study period, allowing the model to learn
meaningful relationships between factors such as relative
humidity, rainfall, temperature, and vegetation indices. The
elevated future risk estimates therefore suggest that, under
continuation of similar climatic conditions, Kerala is likely to
remain vulnerable to vector-borne disease outbreaks.

In contrast, Maharashtra exhibits zero predicted outbreak
risk across all future years. This outcome is primarily
attributable to the lack of sufficient historical outbreak
variation in the dataset rather than an inherent absence of
disease risk. During the study period, Maharashtra records
limited or no outbreak-labelled instances, resulting in a
single-class training scenario. Consequently, the machine
learning model is unable to identify distinguishing outbreak
patterns and produces conservative baseline predictions for
future years. These zero values should be interpreted as a
reflection of data constraints and limited learned signal, not
as evidence that future outbreaks will not occur.

Overall, the contrasting projections underscore the
importance of historical outbreak variability in machine-
learning-based risk modelling. While Kerala’s predictions
capture learned climate-disease relationships, Maharashtra’s
results highlight the limitations of data-driven approaches in
regions with sparse outbreak records.

5. Limitations

This study has certain limitations that should be
acknowledged. The analysis is based on aggregated state-level
data, which may not fully capture district-level variation in
disease transmission. In addition, the absence of population-
stratified epidemiological data prevents explicit modelling of

vulnerable groups such as children, elderly individuals, and
pregnant women. Future outbreak risk estimates are derived
from historical climate-disease relationships rather than
external climate projection scenarios, which may limit the
representation of extreme future conditions. Furthermore,
limited historical outbreak variability in Maharashtra affects
supervised model learning and results in conservative risk
estimates. Despite these limitations, the study provides
valuable region-specific insights for climate-sensitive disease
surveillance and preparedness.

6. Discussion

This study demonstrates that integrating climate variables
with machine learning models provides meaningful insights
into the regional dynamics of vector-borne disease outbreaks.
Traditional epidemiological models often fail to capture the
complexity of interactions between temperature, rainfall,
humidity, vegetation, and urbanization. By applying Random
Forest and Gradient Boosting separately to Maharashtra and
Kerala, we were able to capture these localized drivers and
highlight state-level differences.

The analysis demonstrates that the effects of climate
change on the spread of illness are not consistent. The
primary cause of Maharashtra’s outbreak risk is temperature,
and urbanization increases the possibility of transmission.
In contrast, Kerala’s outbreak risk is more closely correlated
with variations in humidity and rainfall, which is in line
with the state’s monsoon-dominated climate. Instead of
implementing generalized models across many geographies,
this emphasizes the significance of state-specific surveillance
programs.

The ten-year forecast patterns further support the idea
that climate change is contributing to an increase in the
burden of disease. While Keralas varying hazards indicate
the unpredictable nature of future monsoon rains, In
Mabharashtra, projected outbreak risk remains low due to
limited historical outbreak variability in the available data.
This result reflects model conservatism arising from data
constraints rather than an absence of future outbreak risk.

By overcoming the drawbacks of traditional
epidemiological models and integrating intricate climate
variables into machine learning-based outbreak prediction,
the current study effectively addressed the problem
statement. Outbreak probabilities were successfully predicted
for both Maharashtra and Kerala using Random Forest and
Gradient Boosting, and the findings showed how various
environmental parameters influence disease transmission in
each state.
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For policymakers and health authorities, the produced
risk maps, feature importance assessments, and ten-year
predictive forecasts offer a thorough framework. Important
findings are:

« In both conditions, Random Forest fared better than
Gradient Boosting in terms of stability and prediction
accuracy.

« The impact of urbanization and rising temperatures is
highlighted by the temperature-driven epidemic risk
in Maharashtra.

In line with its monsoon-dependent environment,
Kerala’s epidemic risk is driven by rainfall and humidity.
Future estimates indicate an overall increase in outbreak risk,
highlighting the critical need for climate-adaptive public
health planning.

7. Conclusion

In summary, machine learning techniques like Random
Forest offer strong tools for forecasting and analysing state-
specific outbreak dynamics, and climate variability is a
significant factor in determining the risks of vector-borne
diseases. The findings demonstrate how important it is to
include climate predictions in long-term disease management
plans in order to guarantee that interventions continue to be
successful in the face of shifting climatic conditions.

Future research should focus on incorporating district-
level data, population stratification, and climate projection
scenarios to further strengthen machine-learning-based
early warning systems for vector-borne diseases.
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