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Abstract
This study presents an original empirical machine 

learning analysis examining the relationship between climatic 
variability and vector-borne disease incidence under climate 
change conditions. India’s climatic diversity results in region-
specific disease patterns, particularly in states such as Kerala 
and Maharashtra. This study presents an original empirical 
analysis examining the relationship between climatic 
variables and vector-borne disease incidence using machine 
learning techniques. Epidemiological and climatic data 
from 2000 to 2015 were analysed to identify patterns linking 
temperature, rainfall, humidity, and vegetation to disease 
occurrence in the two states. Random Forest and Gradient 
Boosting models were developed to assess outbreak risk and 
evaluate predictor importance. The results indicate strong 
regional differences in climate sensitivity, with humidity and 
rainfall dominating disease risk in Kerala, while temperature 
and urbanization exert greater influence in Maharashtra. The 
study demonstrates the applicability of machine learning for 
climate-sensitive disease forecasting and provides evidence-
based insights to support early warning systems and 
targeted public health interventions under changing climatic 
conditions.

1. Introduction
Vector-borne diseases (VBDs) remain a source of 

serious global public health concern [1-3].  The life cycles 
and transmission potential of the disease-carrying vectors 
mosquitoes, ticks, and flies are highly responsive to climatic 
and environmental influences. The spread of vector-
borne diseases across the globe is highly dependent on 
socioeconomic, demographic, and environmental factors; 
increased outbreaks of dengue, chikungunya, malaria, and 
Zika virus have been observed in recent decades (Giri et 
al., 2020). The World Health Organization (WHO) states 
that vector-borne diseases [4,5] cause roughly 17% of all 
infectious diseases and take the lives of more than 700,000 
people every year, with dengue and malaria as the primary 
perpetrators.
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Vector habitats, breeding patterns, and the dynamics of 
disease transmission have changed as a result of rising global 
temperatures, unpredictable rainfall, and an increase in the 
frequency of extreme weather events.  As a result, climate 
change has become a significant factor in the spatiotemporal 
unpredictability of VBD outbreaks, which makes forecasting 
them more difficult. For example, increased rainfall can 
create desirable breeding sites such as standing water bodies, 
while increased temperatures can extend mosquito breeding 
seasons and accelerate viral replication in vectors. Yet, since 
humans are able to retain water in containers, hence creating 
breeding sites for Aedes mosquitoes, dry conditions can 
equally influence disease dynamics. Therefore, the interaction 
between climatic factors and disease transmission is highly 
context-dependent and non-linear.

Traditional statistical and epidemiological models often 
make oversimplifying assumptions regarding the interactions 
between diseases and the climate.  The nonlinear, high-
dimensional, and dynamic interactions regulating the 
transmission of vector-borne diseases are often not well 
described by such models, even though they have provided 
valuable insights into disease dynamics. For instance, 
temperature and rainfall influence human conduct (e.g., 
duration of outdoor activity or use of preventive measures), 
the rate of vector biting, and virus incubation periods as well as 
mosquito density.  Estimating risk of illness is very challenging 
because of the collective effect of these dependent variables. 
In addition, real-time information streams such as population 
flows, socioeconomic data, and remote sensing observation all 
of which are increasingly valuable to make accurate predictions 
are often challenging for conventional models to include.

Due to its diverse climate, ranging from desert regions of 
Rajasthan to humid tropical environments in Kerala, India 
is a particularly problematic case study. The contrasting 
climatic regimes of Kerala and Maharashtra render them 
suitable for research on the disease risk that is susceptible 
to climate change.  Its semi-arid regions and monsoon-
influenced fluctuations keep Maharashtra oscillating between 
periods of dryness and torrential rains.  These fluctuations 
often trigger seasonal dengue and malaria outbreaks in rural 
as well as urban regions, most notably in rapidly emerging 
cities such as Mumbai and Pune. Whereas Kerala has a 
humid tropical climate and long monsoon rains that always 
maintain conducive ecological conditions for disease vector 
survival and transmission, the differing climatic regimes of 
these two states provide a rare opportunity to study how local 
environmental pressures and population pressures influence 
vector-borne disease risks [6].

The burden of vector-borne diseases is not uniformly 
distributed across populations. Vulnerable groups such 
as children, elderly individuals, pregnant women, and 
immunocompromised populations are at higher risk 
due to increased exposure, weaker immune responses, 
or physiological susceptibility. Children are particularly 
vulnerable due to underdeveloped immunity, while 
elderly populations experience higher complication rates. 
Pregnant women face increased risks of adverse maternal 
and neonatal outcomes, especially in dengue- and malaria-
endemic regions. Although the present study does not model 
disease risk separately for these sub-populations due to 
data limitations, the identified outbreak risk patterns have 
direct implications for targeted protection and public health 
planning for these vulnerable groups.

Machine learning (ML) offers a reasonable alternative 
in this case to enhance VBD predictive modelling. ML 
algorithms, unlike conventional models, are capable of 
processing big, heterogeneous data sets like epidemiology 
records, land-use patterns, demographic variables, and 
climate variables.  Increasing numbers of techniques are 
being employed to identify the complex nonlinear patterns 
between climate and health outcomes, including random 
forests, support vector machines, gradient boosting, and deep 
neural networks. These algorithms may enhance predictive 
accuracy, uncover subtle patterns in data, and respond 
to evolving disease dynamics that conventional models 
cannot. A hybrid approach combining the strengths of data-
driven and mechanistic approaches is also facilitated by the 
integration of machine learning (ML) with process-based 
models of simulation, including VECTRI (VECTOR-borne 
disease community model of Transmission and Regional 
Impact).

The easy access to satellite remote sensing data and 
seasonal climate forecasts has facilitated the integration 
of environmental information into predictive machine 
learning models. For example, ML models can utilize rainfall 
anomalies and temperature variations as predictors to 
detect possible hotspots of disease. Such combined models 
can aid early warning systems and facilitate timely public 
health intervention in the form of vector control strategies, 
awareness activities, and resource mobilization.

It is hoped that the results of this analysis will enhance 
our understanding of how illness risks are related to regional 
climate variability so that more accurate prediction models 
can be generated and focused efforts can be directed towards 
disease prevention and control.  The research also enhances 
climate-resilient health systems and enhances illness 
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surveillance, which supports Sustainable Development Goal 
(SDG) 3: Good Health and Well-Being.

Also, by including the health impacts of climate change 
and adding adaptation action, it aligns with SDG target 13: 
Climate Action.

This study uses historical data spanning the period 2000–
2015 to develop and evaluate machine learning models for 
vector-borne disease risk assessment. The temporal scope 
was selected to ensure consistency across climatic and 
epidemiological datasets for both Kerala and Maharashtra. 
Future outbreak risk estimates presented in this study 
are not based on external climate scenarios but represent 
model-derived projections assuming continuity of observed 
climate–disease relationships.

The end aim of this work is to advance public health 
preparedness under altered climate conditions and 
contribute to the growing body of knowledge on diseases 
that are vulnerable to climate change. Beyond the exploration 
of scientific questions around the relationship between 
climate change and disease spread, this research’s emphasis 
on Maharashtra and Kerala provides local communities, 
healthcare planners, and policymakers with actionable 
guidance on how to enhance their capacity to endure future 
epidemics.

This work is designed as an original empirical research 
study rather than a review article. The study applies machine 
learning techniques to historical climatic and epidemiological 
data to quantitatively assess outbreak risk and identify 
dominant climate drivers of vector-borne diseases at the 
regional level.

2. Data and Methodology

2.1 Study Area
The study focuses on two Indian states Kerala and 

Maharashtra selected due to their contrasting climatic 
conditions and differing patterns of vector-borne disease 
transmission. Kerala has a humid tropical climate with 
high annual rainfall and prolonged monsoon seasons, 
creating favourable ecological conditions for vector breeding 
throughout the year. In contrast, Maharashtra experiences a 
semi-arid to tropical climate with strong seasonal variability 
and rapid urbanisation, particularly in metropolitan regions 
such as Mumbai and Pune. These contrasting climatic and 
environmental characteristics make Kerala and Maharashtra 
suitable for comparative analysis of climate-sensitive vector-
borne disease risk [7].

2.1.1 Rationale for Model Selection
Machine learning models were selected based on their 

suitability for handling nonlinear relationships, mixed data 
types, and limited sample sizes commonly encountered in 
climate–health datasets. Vector-borne disease transmission 
is influenced by interacting climatic and environmental 
variables whose effects are rarely linear or independent. 
Therefore, ensemble-based tree models were prioritized due 
to their robustness and interpretability. 

The empirical analysis in this study is based on 
epidemiological and climatic data covering the period 2000 
to 2015 for both Kerala and Maharashtra. This timeframe 
was selected due to the availability of complete and reliable 
records across all variables of interest. The same study period 
was applied uniformly to both states to ensure temporal 
comparability.

Time was explicitly incorporated into the modelling 
framework through annual indexing of observations. Lagged 
climatic variables and moving averages were generated during 
preprocessing to account for delayed effects of temperature, 
rainfall, and humidity on disease transmission dynamics.

All model training, validation, and performance 
evaluation were conducted exclusively using data from the 
2000–2015 period.

Random Forest (RF) was chosen because of its ability to:

●	 Capture nonlinear interactions without requiring 
prior functional assumptions

●	 Handle multicollinearity among climatic variables

●	 Provide stable predictions with reduced overfitting 
through bootstrapping

●	 Offer feature importance measures that aid 
epidemiological interpretation

Gradient Boosting (GB) was selected as a comparative 
model due to its:

●	 Strong performance in structured tabular data

●	 Ability to sequentially correct prediction errors

●	 Sensitivity to subtle patterns in climate–disease 
relationships

These models are widely used in epidemiological 
forecasting and have demonstrated reliable performance in 
previous climate-sensitive disease studies.

2.1.2 Model Implementation
All analyses were implemented using Python (version 
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3.x). Data handling and preprocessing were conducted 
using Pandas and NumPy, while model development and 
evaluation were carried out using Scikit-learn.

The modelling workflow followed these steps:

1.	 Data Input:

Pre-processed climatic, environmental, and epidemiological 
variables were structured into a single analytical dataset at 
the state–year level.

2.	 Train–Test Split:

The dataset was divided into 70% training data and 30% 
testing data using random stratification to preserve outbreak 
and non-outbreak class proportions.

3.	 Model Training:

o	 Random Forest models were trained using multiple 
decision trees with bootstrap sampling.

o	 Gradient Boosting models were trained using 
sequential tree construction to minimize classification loss.

4.	 Hyperparameter Setting:

Standard hyperparameter values were used initially to avoid 
overfitting, with tree depth, number of estimators, and 
learning rate selected based on stability and interpretability 
rather than maximal optimization.

5.	 Feature Importance Extraction:

Post-training, feature importance scores were extracted to 
identify the most influential climatic and environmental 
predictors driving disease risk.

2.1.3 Model Validation Strategy

To ensure reliability and generalizability of the models, 
multiple validation techniques were applied:

●	 Hold-out Validation:

●	 Model performance was assessed on unseen test data 
to evaluate predictive accuracy.

●	 Cross-Validation:

●	 K-fold cross-validation was conducted on the training 
dataset to reduce sensitivity to random data splits.

●	 Performance Metrics:

●	 For outbreak classification tasks, the following 
metrics were used: Accuracy Precision Recall F1-
score ROC–AUC. For continuous disease incidence 
prediction, regression performance was assessed 
using Root Mean Square Error (RMSE), Coefficient 

of Determination (R²)

High recall values were prioritized, as minimizing false 
negatives is critical in public health early warning systems.

2.1.4 Reproducibility Measures
To ensure reproducibility of results:

●	 A fixed random seed was used across model training 
and evaluation stages.

●	 All preprocessing steps (scaling, lag generation, 
normalization) were applied consistently across 
training and test datasets.

●	 The same feature set and modelling framework were 
used for both Kerala and Maharashtra to ensure 
comparability.

●	 Model evaluation metrics and feature importance 
rankings were reported explicitly rather than relying 
on qualitative interpretation.

While the study relies on secondary data sources, 
all datasets used are publicly available through official 
government portals, enabling independent replication.

2.1.5 Interpretation Framework
Model outputs were interpreted with epidemiological 

relevance in mind rather than purely statistical performance. 
Feature importance results were evaluated alongside known 
vector ecology and climatic suitability conditions to avoid 
spurious associations. The models were not treated as 
deterministic predictors but as risk assessment tools intended 
to support surveillance planning and resource prioritization 
[8-10].

3. Results
The results presented in this section are derived directly 

from machine learning model outputs and quantitative 
performance metrics. All interpretations are based on 
observed trends in the data, feature importance scores, and 
validated model evaluation measures. No conclusions are 
drawn without numerical support from model performance 
or empirical associations identified during analysis.

3.1 Temporal Trend of Vector-Borne Disease Cases 
(2000–2015)

Figure 1 presents the trend of total reported vector-borne 
disease cases from 2000 to 2015. The annual case counts 
fluctuate within a narrow range, with values approximately 
between 3,850 and 4,080 cases. While no monotonic 
increasing or decreasing trend is observed, several peak 
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years are evident, indicating episodic increases in disease 
burden rather than steady growth. The highest total case 
count occurs around 2013, whereas relatively lower values 
are observed in 2001 and 2006. This inter-annual variability 
suggests that disease incidence is influenced by year-specific 
conditions rather than long-term linear trends.

3.2 State-wise Distribution of Total Cases
Figure 2 illustrates the distribution of total cases across 

Kerala and Maharashtra using boxplots. Kerala exhibits a higher 
median case count compared to Maharashtra, along with a 

broader interquartile range. This indicates both higher overall 
disease burden and greater variability in Kerala. Maharashtra 
shows a lower median and a comparatively narrower spread, 
though a few outliers are present. These results quantitatively 
demonstrate that disease incidence levels differ substantially 
between the two states over the study period.

3.3 Rainfall and Outbreak Association
Figure 3 displays the relationship between rainfall and 

total disease cases, with outbreak and non-outbreak years 
distinguished. Outbreak years are concentrated at moderate to 

Figure 1: Temporal Trend of Vector-Borne Disease Cases (2000–2015).

Figure 2:  State-wise Distribution of Total Vector-Borne Disease Cases.
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high rainfall levels and are associated with higher case counts, 
whereas non-outbreak years are more frequently observed 
at lower rainfall values with comparatively fewer cases. The 
visible separation between outbreak and non-outbreak 
observations indicates that rainfall contributes meaningfully 
to outbreak classification, supporting its inclusion as a 
predictor variable in the machine learning models.

3.4 Comparison of Dengue and Malaria Burden
Figure 4 compares cumulative dengue and malaria cases 

across the study period. Dengue cases substantially exceed 
malaria cases, with dengue accounting for approximately 
45,000 total cases, compared to around 17,000 malaria 
cases. The magnitude of this difference indicates that dengue 
represents the dominant component of vector-borne disease 
burden in the dataset. This imbalance justifies focusing 
outbreak prediction models on overall vector-borne disease 
risk rather than disease-specific modeling within this study.

3.5 Correlation Structure Among Climatic and 
Environmental Variables

Figure 5 presents the correlation heatmap between 
disease indicators and environmental variables. Total cases 
and incidence per 100,000 population show strong positive 
correlations with temperature variables, with correlation 
coefficients exceeding 0.85 for both average maximum and 
minimum temperature. Moderate positive correlations 
are observed with relative humidity (≈0.55–0.60) and 
NDVI (≈0.64–0.70). Rainfall exhibits a weaker but positive 
association (≈0.39–0.41). Urban fraction shows near-zero 
correlation with disease variables, indicating limited linear 
association at the aggregated scale used in this study.

3.6 Model Performance Evaluation
Table 1 summarizes the performance of Random Forest 

and Gradient Boosting models developed for outbreak 
prediction in Kerala. The Random Forest model achieved 

Figure 3: Scatter plot: Rainfall vs Total Cases.

State Model Accuracy Precision Recall F1-Score AUC
Kerala Random Forest 0.938 0.944 0.993 0.968 0.621
Kerala Gradient Boosting 0.917 0.943 0.971 0.957 0.590

Table 1: Model Performance.
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Figure 4: Comparison of Dengue and Malaria Burden.

Total_Cases Incidence_per_100k NDVI

Total_Cases 1.000000 0.955420 0.549933 0.635796
Incidence_per_100k 0.955420 1.000000 0.602050 0.695374

0.549933 0.602050 1.000000 0.459803
NDVI 0.635796 0.695374 0.459803 1.000000

Table: Correla�on Matrix of Climate and Outbreak Features

Figure 5: Correlation Structure Among Climatic and Environmental Variables.
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an accuracy of 0.938, precision of 0.944, recall of 0.993, and 
F1-score of 0.968, outperforming Gradient Boosting, which 
recorded an accuracy of 0.917 and F1-score of 0.957. Both 
models demonstrate high recall, indicating strong sensitivity 
in identifying outbreak years.

The ROC–AUC values are 0.621 for Random Forest 
and 0.590 for Gradient Boosting. While moderate, these 
values are acceptable given the imbalanced nature of 
outbreak data and the prioritization of recall over strict class 
discrimination. In public health applications, minimizing 
false negatives is critical, making recall and F1-score more 
relevant performance indicators than AUC alone.

3.7 Feature Importance Analysis
Table 2 presents the top predictive features identified 

by each model. Relative humidity (%) emerges as the most 
influential predictor in both Random Forest and Gradient 
Boosting models. In the Random Forest model, rainfall and 
NDVI rank as the second and third most important features, 
respectively. Gradient Boosting assigns higher importance 
to NDVI than rainfall. These rankings quantitatively 
demonstrate that climatic and environmental variables 

dominate outbreak prediction, with humidity consistently 
exerting the strongest influence.

4. Future Predictions (Figure 6)
The outbreak label distribution differed substantially 

between the two study regions. While Kerala exhibited 
multiple outbreak years, Maharashtra showed limited or 
absent outbreak instances during the study period. This 
class imbalance affects probabilistic learning and influences 
future risk projections, particularly for Maharashtra. For 
regions with a single observed outbreak class, conventional 
performance metrics were not reported, and models were 
used solely for risk extrapolation rather than predictive 
validation. The projected outbreak risk for Kerala remains 
consistently high across the next decade, reflecting strong 
climatic–environmental associations learned from historical 
outbreak patterns. In contrast, Maharashtra exhibits near-
zero predicted outbreak probability across future years. This 
outcome reflects the absence of sufficient historical outbreak 
signals rather than definitive evidence of zero future risk. The 
flat risk projection observed for Maharashtra highlights a 
key limitation of data-driven outbreak modelling. In regions 

State Model 1st Feature 2nd Feature 3rd Feature
Kerala Random Forest Relative_Humidity_% Rainfall_mm NDVI

Table 2: Top Predictive Features.

Figure 6
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with limited historical outbreak variability, machine learning 
models may underestimate future risk due to insufficient 
training signal. Therefore, Maharashtra’s projections should 
be interpreted as conservative estimates rather than definitive 
forecasts.

4.1 Predicted Outbreak Risk (Next 10 Years)
The ten-year outbreak risk projections reveal clear 

regional contrasts between Kerala and Maharashtra, 
reflecting differences in historical outbreak patterns and 
climatic sensitivity.

For Kerala, the predicted outbreak probabilities remain 
consistently high across the future projection period, with 
values ranging approximately between 0.60 and 0.99. This 
indicates a strong and persistent association between climatic 
and environmental variables and outbreak occurrence in the 
historical data. Kerala has experienced multiple outbreak 
years during the study period, allowing the model to learn 
meaningful relationships between factors such as relative 
humidity, rainfall, temperature, and vegetation indices. The 
elevated future risk estimates therefore suggest that, under 
continuation of similar climatic conditions, Kerala is likely to 
remain vulnerable to vector-borne disease outbreaks.

In contrast, Maharashtra exhibits zero predicted outbreak 
risk across all future years. This outcome is primarily 
attributable to the lack of sufficient historical outbreak 
variation in the dataset rather than an inherent absence of 
disease risk. During the study period, Maharashtra records 
limited or no outbreak-labelled instances, resulting in a 
single-class training scenario. Consequently, the machine 
learning model is unable to identify distinguishing outbreak 
patterns and produces conservative baseline predictions for 
future years. These zero values should be interpreted as a 
reflection of data constraints and limited learned signal, not 
as evidence that future outbreaks will not occur.

Overall, the contrasting projections underscore the 
importance of historical outbreak variability in machine-
learning-based risk modelling. While Kerala’s predictions 
capture learned climate–disease relationships, Maharashtra’s 
results highlight the limitations of data-driven approaches in 
regions with sparse outbreak records.

5. Limitations
This study has certain limitations that should be 

acknowledged. The analysis is based on aggregated state-level 
data, which may not fully capture district-level variation in 
disease transmission. In addition, the absence of population-
stratified epidemiological data prevents explicit modelling of 

vulnerable groups such as children, elderly individuals, and 
pregnant women. Future outbreak risk estimates are derived 
from historical climate–disease relationships rather than 
external climate projection scenarios, which may limit the 
representation of extreme future conditions. Furthermore, 
limited historical outbreak variability in Maharashtra affects 
supervised model learning and results in conservative risk 
estimates. Despite these limitations, the study provides 
valuable region-specific insights for climate-sensitive disease 
surveillance and preparedness.

6. Discussion
This study demonstrates that integrating climate variables 

with machine learning models provides meaningful insights 
into the regional dynamics of vector-borne disease outbreaks. 
Traditional epidemiological models often fail to capture the 
complexity of interactions between temperature, rainfall, 
humidity, vegetation, and urbanization. By applying Random 
Forest and Gradient Boosting separately to Maharashtra and 
Kerala, we were able to capture these localized drivers and 
highlight state-level differences.

The analysis demonstrates that the effects of climate 
change on the spread of illness are not consistent. The 
primary cause of Maharashtra’s outbreak risk is temperature, 
and urbanization increases the possibility of transmission. 
In contrast, Kerala’s outbreak risk is more closely correlated 
with variations in humidity and rainfall, which is in line 
with the state’s monsoon-dominated climate. Instead of 
implementing generalized models across many geographies, 
this emphasizes the significance of state-specific surveillance 
programs.

The ten-year forecast patterns further support the idea 
that climate change is contributing to an increase in the 
burden of disease. While Kerala’s varying hazards indicate 
the unpredictable nature of future monsoon rains, In 
Maharashtra, projected outbreak risk remains low due to 
limited historical outbreak variability in the available data. 
This result reflects model conservatism arising from data 
constraints rather than an absence of future outbreak risk. 

By overcoming the drawbacks of traditional 
epidemiological models and integrating intricate climate 
variables into machine learning-based outbreak prediction, 
the current study effectively addressed the problem 
statement. Outbreak probabilities were successfully predicted 
for both Maharashtra and Kerala using Random Forest and 
Gradient Boosting, and the findings showed how various 
environmental parameters influence disease transmission in 
each state.



Page 10 of 10

Journal of Clinical Medicine: Current Research  Shalini Rajesh, et al.

www.clinicalmedicinecr.com

For policymakers and health authorities, the produced 
risk maps, feature importance assessments, and ten-year 
predictive forecasts offer a thorough framework. Important 
findings are: 

•	 In both conditions, Random Forest fared better than 
Gradient Boosting in terms of stability and prediction 
accuracy.

•	 The impact of urbanization and rising temperatures is 
highlighted by the temperature-driven epidemic risk 
in Maharashtra. 

In line with its monsoon-dependent environment, 
Kerala’s epidemic risk is driven by rainfall and humidity. 
Future estimates indicate an overall increase in outbreak risk, 
highlighting the critical need for climate-adaptive public 
health planning.

7. Conclusion
In summary, machine learning techniques like Random 

Forest offer strong tools for forecasting and analysing state-
specific outbreak dynamics, and climate variability is a 
significant factor in determining the risks of vector-borne 
diseases. The findings demonstrate how important it is to 
include climate predictions in long-term disease management 
plans in order to guarantee that interventions continue to be 
successful in the face of shifting climatic conditions.

Future research should focus on incorporating district-
level data, population stratification, and climate projection 
scenarios to further strengthen machine-learning-based 
early warning systems for vector-borne diseases.
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