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ABSTRACT
Phosphate has fundamental roles in multiple physiologic 

functions. It is regulated by the interplay of parathyroid hormone 
(PTH), 1,25-dihydroxycholecalciferol (1,25 VitD), and fibroblast 
growth factor 23 (FGF23). Dysregulation of phosphate is related 
to the mechanisms of atherosclerotic diseases. Both phosphate 
dysregulation and its regulatory hormones are involved in the 
atherosclerotic disease process. Clinical studies have found that 
phosphate level has a U-shaped association with cardiovascular 
outcomes. However, effective treatment trials are currently lacking. 
In this article, we reviewed the evidence of phosphate as a marker of 
atherosclerosis. Its roles in all aspects of cardiovascular disease, from 
pathogenesis to manifestation, should prompt us to explore treating 
hyperphosphatemia as a mean of CVD prevention.

1. Introduction
Phosphorous is a fundamental element of life. Its oxidized 

product, phosphate, has essential roles in cellular function, 
genetic signaling, energy metabolism, neurotransmission 
and is the building block of bony structures in our body 
[1]. Like other crucial elements in the body, phosphate is 
tightly regulated by the kidney.1However, it is also one of 
the first mechanisms to fail in the disease process of chronic 
kidney disease (CKD) [2]. Although abnormal phosphate 
metabolism is considered the hallmark feature of chronic 
kidney disease (CKD), studies have shown that abnormal 
phosphate levels are associated with vascular calcification, 
atherosclerosis, all-cause, and cardiovascular disease(CVD) 
mortality, regardless of renal function [3-5]. In this brief 
review, we shall discuss the mechanism of phosphate control, 
how phosphate imbalance affects cardiovascular function, 
what are the known treatment options for phosphate 
imbalance and what remained to be investigated. 

1.1 Mechanism of phosphate control
Phosphate homeostasis is achieved through 

the interplay of parathyroid hormone (PTH), 
1,25-dihydroxycholecalciferol (1,25 VitD), and 
phosphatonins such as fibroblast growth factor 23 (FGF23) 
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[1]. Phosphate primarily deposit in bony and muscular 
tissues, with less than 1% in the extracellular fluid [6]. The 
body regulates phosphate at the bowels, the kidneys, and 
the bones. The small bowel absorbs phosphate via passive 
transport and vitamin D-dependent sodium-phosphate 
cotransporter (NPT2b) [7]. The kidney is responsible 
for excreting around 34mmol of phosphate every day 
[8]. About 90% of phosphate filtered through the renal 
glomeruli is reabsorbed by NPT2a and NPT2c sodium-
phosphate cotransporters at the proximal tubules while the 
remaining 10% of phosphate is excreted [9]. The bone serves 
as the storage in which phosphate is stored or extracted 
constantly. PTH can reduce renal phosphate resorption by 
decreasing the abundance of NPT2a and NPT2c [10]. PTH 
also stimulates the production of 1,25 VitD and FGF23 [11]. 
1,25 VitD increases intestinal absorption by enhancing 
the expression of NPT2b and increases renal resorption 
by improving the expression of NPT2a and NPT2c [12]. 
1,25 VitD also suppresses synthesis of PTH and enhances 
FGF23 production [13]. FGF23 is produced by osteocytes 
and osteoblasts [1]. FGF23 binds to FGF receptor-Klotho 
complex to exhibit its function [14]. It suppresses NPT2a 
and NPT2c expression at the proximal renal tubules, thereby 
inhibiting renal phosphate reabsorption [15]. FGF23 also 
reduces 1,25 VitD production and PTH synthesis [14]. 

1.2 Phosphate and cardiovascular disease
As renal function declines, the primary ability to 

eliminate phosphate is gradually lost [16]. Initially, 
phosphate homeostasis is maintained with increased PTH 
and FGF23 production [17,18]. These mechanisms are 
overwhelmed when the glomerular filtration rate falls to <30 
mL/min/1.73 m2 [16]. The final condition of renal failure 
patients is hyperphosphatemia, elevated PTH, FGF23, and 
low 1,25VitD production. Hyperphosphatemia may directly 
affect vascular health by 1. increasing oxidative damage, 2, 
affecting endothelial cell function, 3. initiating calcification 
by promoting vascular smooth muscle cell transition into 
the osteochondrogenic phenotype [19,20]. Indirectly, 
hyperphosphatemia is associated with hypocalcemia which 
is not only arrhythmogenic but also a trigger for PTH 
production [21]. Increased FGF23 is directly associated 
with atherosclerosis, left ventricular hypertrophy, and heart 
failure [22]. PTH has a myriad of on the cardiovascular 
system, including 1. Pro-inflammation, 2. Pro-fibrosis and 
3. Sympathetic activation [23-25]. Low 1,25VitD production 
and subsequent unopposed renin-angiotensin-aldosterone 
system activation is associated with decreased cardiac 
contractility, autonomic dysregulation, coronary artery 
calcification, myocardial fibrosis, and systemic inflammation 
[26-27] (Figure 1). 

Figure 1: Mechanism of phosphate related CV risk
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1.3 Phosphate control and cardiovascular outcomes
There is ample evidence that phosphate is involved in the 

atherosclerotic process from the initiation to manifestation. 
Notably, the involvement of phosphate in CVD extends 
beyond the CKD population [28]. Serum phosphate level is 
independently associated with the presence of atherosclerotic 
plaques [29-31]. Phosphate is also an independent marker 
for vascular plaque progression and calcification [32]. It is 
independently associated with the development of clinical 
coronary artery disease (CAD), heart failure, and atrial 
fibrillation [5,33,34]. For patients with established CAD or 
heart failure, phosphate is also associated with a higher event 
rate [35-37]. Interestingly, the association between phosphate 
and CV risk is U-shaped. This is repeatedly demonstrated in 
a large primary prevention cohort by Hayward et al. [38] 
and a secondary prevention study by Tsai et al. [36]. Indeed, 
lack of phosphate control is the most significant remaining 
modifiable contributor to CKD mortality in a population 
attributable risk analysis [39]. 

1.4 Challenges and future perspectives
While the connection between phosphate and CVD 

is well accepted, there is a lack of treatment trials. Those 
that exist are almost exclusively for CKD patients. Current 
methods of phosphate management, including diet 
restriction and phosphate binders, are insufficient to achieve 
adequate phosphate control [39]. Traditional calcium-based 
phosphate binders seem to precipitate vascular calcification 
and CV risk [40]. Lanthanum or sevelamer phosphate binders 
were considered a promising tool to lower phosphate, given 
their initial record of reduced coronary calcium progression 
[41,42]. However, the multicenter, double-blind IMPROVE-
CKD trial, which randomized 278 CKD patients to either 
lanthanum or placebo, showed disappointing results at the 
price of high pill burden and cost [43]. The trial did not 
demonstrate significant improvements in the pulse wave 
velocity, PTH level, FGF23 level, or phosphate level. These 
results corroborate with previous smaller trials [44]. On the 
other hand, the latest randomized control trial showed that 
strict phosphate control is independently associated with 
slower CAC progression for patients who can achieve lower 
phosphate levels [45]. Thus, adequate phosphate control 
remained an unmet need. Several novel agents were developed 
to fill the gap. EOS789, a sodium-phosphate transporter 
blocker, significantly lowered phosphate in an animal study 
[46]. Clinical trials of EOS789 are ongoing (NCT02965053). 
Tenapanor is a paracellular absorption blocker that inhibits 
phosphate absorption in the GI tract. In a phase 3 trial 

tenapanor significantly reduced the phosphate level in 
patients receiving hemodialysis though no CVD outcomes 
data were reported [47]. Given the current understanding of 
phosphate homeostasis and its CVD hazard, clinicians should 
consider adopting novel therapy early, on top of traditional 
diet control and binders, to achieve a normal phosphate level 
for all patients. 

2. Conclusion
In summary, the evidence thus far should convince us that 

phosphate is not merely a marker of CKD but atherosclerosis 
as well. Its roles in all aspects of cardiovascular disease, from 
pathogenesis to manifestation, should prompt us to explore 
treating hyperphosphatemia as a mean of CVD prevention. 
Whilst practical ways to control hyperphosphatemia remain 
elusive, a piece to the puzzle of atherosclerosis management 
remains missing. 
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